Cordial Labeling Of One Point Union Of Double Tail C_{5} Garphs and their invariance.

Mukund V.Bapat ${ }^{1}$

Abstract

1. Abstract: We discuss graphs of type $\mathrm{G}^{(\mathrm{k})}$ i.e. one point union of k-copies of G for cordial labeling. We take G as double-tail graph. A double-tail graph is obtained by attaching a path P_{m} to apair of adjacent vertices of given graph. It is denoted by double-tail $\left(G, P_{m}\right)$ where G is given graph. We take G as C_{5} and restrict our attention to $m=2$ in P_{m} and consider upto three pendent edges attached at a pair of adjacent vertices. Further we consider all possible structures of $\mathrm{G}^{(\mathrm{k})}$ by changing the common point in one point union and obtain non-isomorphic structures. We show all these structures as cordial graphs. This is called as invariance of different structures of $\mathrm{G}^{(\mathrm{k})}$ under cordial labeling.

Key words: cordial, one point union, double-tail graph, cycle, labeling

Subject Classification: 05C78

2. Introduction

The graphs we consider are simple, finite, undirected and connected. For terminology and definitions we depend on Holton [6] Graph Theory by Harary [7], A dynamic survey of graph labeling by J.Gallian [9] and Douglas West.[10].I.Cahit introduced the concept of cordial labeling[6]. $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}$ be a function. From this label of any edge (uv) is given by $|f(u)-f(v)|$. Further number of vertices labeled with 0 i.e $v_{f}(0)$ and the number of vertices labeled with 1 i.e. $v_{f}(1)$ differ at most by one .Similarly number of edges labeled with 0 i.e. $e_{f}(0)$ and number of edges labeled with 1 i.e. $e_{\mathrm{f}}(1)$ differ by at most one. Then the function f is called as cordial labeling. Cahit has shown that : every tree is cordial; Kn is cordial if and only if $\mathrm{n} \leq 3 ; \mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is cordial for all m and n ; the friendship graph $\mathrm{C}_{3}{ }^{(t)}$ (i.e., the one-point union of t copies of C_{3}) is cordial if and only if t is not congruent to $2(\bmod 4)$; all fans are cordial; the wheel W_{n} is cordial if and only if n is not congruent to $3(\bmod 4)$. A lot of work has been done in this type of labeling. One may refer dynamic survey by J. Gallian [9].

Our focus of attention is on one point unions on different graphs. For a given graph there are different one point unions (upto isomorphism) structures possible. It depends on which point on G is used to fuse to obtain one point union. We have shown that for $G=$ bull on C_{3}, bull on $\mathrm{C}_{4}, \mathrm{C}_{3}{ }^{+}, \mathrm{C}_{4}{ }^{+}$-e the different path union $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$ are cordial [4].It is called as invariance under cordial labeling. We use the convention that $\mathrm{v}_{\mathrm{f}}(0,1)=(\mathrm{a}, \mathrm{b})$ to indicate the number of vertices labeled with 0 are a in number and that number of vertices labeled with 1 are b. Further $e_{f}(0,1)=(x, y)$ we mean the number of edges labeled with o are x and number of edges labeled with 1 are. The graph whose cordial labeling is available is called as cordial graph. In this paper we define double-tail graph and obtain one point union graphs on it. Let G be a (p, q) graph.To one of it's pair of adjacent vertices we fuse t number of paths P_{m}.We denote this by double tail $(\mathrm{G}, \mathrm{tPm})$. We choose $\mathrm{m}=2$ and $\mathrm{t}=1,2,3$.and discuss their one point union graph at different vertices of G and it's invariance under cordial labeling.

3. Preliminaries

3.1 Tail Graph: $A(p, q)$ graph G to which a path P_{m} is fused at some vertex. This also can be explained as take a copy of graph G and at any vertex of it fuse a path P_{m} with it's one of the pendent vertex. It's number of vertices are $\mathrm{P}+\mathrm{m}-1$ and edges are by $q+m-1$. It is denoted by tail $\left(G, P_{m}\right)$. In this paper we fix G as C_{3} and take P_{m} for $m=2,3,4,5$.
3.2 Double tail graph : To any graph G we attach paths of equal length to adjacent pair of vertices. When these paths are gust an edge each then it is referred as bull graph.This graph is denoted by double-tail $(\mathrm{G}, \mathrm{Pm})$ when both tails are identical and equal to p_{m}.if tails are p_{m} and p_{n} then the graph is denoted by double-tail $\left(G, p_{n}, p_{m}\right)$. It has $p+m+n-2$ vertices and $q+m+n-1$ edges where G is (p, q) graph. 3.3 Fusion of vertices. Let $u \neq v$ be any two vertices of G. We replace these two vertices by a single vertex say x and all edges incident to u and v are now incident to x. If loop is formed then it is deleted.[6] $3.4 G^{(K)}$ it is One point union of k copies of G is obtained by taking k copies of G and fusing a fixed vertex of each copy with same fixed vertex of other copies to create a single vertex common to all copies. If G is a (p, q) graph then $\mid V\left(G_{(k)} \mid=k(p-1)+1\right.$ and $|E(G)|=k . q$
-Results Proved:

Theorem4.1All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double-tail $\left(\mathrm{C}_{5}, \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(k)}$ are cordial graphs.

Proof:

Fig 4.1 Four non-isomorphic one point union are possible at points ' a ', ' b ',' c ' and ' d '

Fig $4.3 v_{f}(0,1)=(4,3) e_{f}(0,1)=(3,4)$

Fig $4.2 v_{f}(0,1)=(4,3) e_{f}(0,1)=(4,3)$

Fig $4.4 \mathrm{~V}_{\mathrm{f}}(0,1)=(4,3) \quad \mathrm{e}_{\mathrm{f}}(0,1)=(4,3)$

Fig $4.5 v_{f}(0,1)=(4,3) e_{f}(0,1)=(3,4)$
From Fig 4.1 it follows that we can take one point union at four vertices ' a ', ' b ', ' c 'and ' d '. For the one point union at vertices a , b or c we fuse the type A and Type B label at vertices a , b or c respectively. For the one point union at vertex ' d ' we use type C and type D label and fuse it at vertex d. For given k, if $k=2 x$ then x copies of type A (type C) and x copies of type $B($ type D) are fused at desired point. If $K=2 x+1$ then one more copy of Type $A(t y p e C)$ is used than the copies of type B (type D) used.

In both case the label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(4+6 \mathrm{x}$, $3+6 x), e_{f}(0,1)=(4+7 k, 3+7 k)$ where $k=2 x+1, x=0,1,2 \ldots$ If $k=2 x ; x=1,2, .$. then we have, $v_{f}(0,1)=(7+5(x-1), 6+5(x-$ $1)$), $\mathrm{e}_{\mathrm{f}}(0,1)=(7 \mathrm{k}, 7 \mathrm{k})$. Thus the graph is cordial.

Theorem 4.2 All non- isomorphic one point union on k-copies of graph obtained on $\mathrm{G}=$ double $-\operatorname{tail}\left(\mathrm{C}_{5}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(k)}$ are cordial graphs. Proof:
From Fig 4.6 it follows that we can take one point union at four vertices ' a ', ' b ', ' c ' and ' d '. For the one point union at vertices a, or b we fuse the type A and Type B label at vertices a, b respectively. For the one point union at vertex ' c ' and ' d ' we use type C and type D label and fuse it at vertex c or d as required. For given k, if $k=2 x$ then x copies of type A (type C) and x copies of type $B($ type D) are fused at desired point . If $K=2 x+1$ then one more copy of Type A (type C) is used than the copies of type B (type D) used.

Fig 4.6 Four non-isomorphic one point union are possible at points 'a', ' b ',' c ' and 'd'

Fig $4.9 \mathrm{v}_{\mathrm{f}}(0,1)=(5,4) \quad \mathrm{e}_{\mathrm{f}}(0,1)=(5,4)$
Fig $4.8 v_{f}(0,1)=(5,4) e_{f}(0,1)=(4,5)$

Fig $4.10 v_{f}(0,1)=(5,4) \quad e_{f}(0,1)=(4,5)$

In both cases the label number distribution is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(5+8 \mathrm{x}, 4+8 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(5+9 \mathrm{x}, 4+9 \mathrm{x})$ where $\mathrm{k}=2 \mathrm{x}+1$, $x=0,1,2 \ldots$ If $k=2 x ; x=1,2, .$. then we have, $v_{f}(0,1)=(9+8(x-1), 8+8(x-1)), e_{f}(0,1)=(9(k-1), 9(k-1))$. Thus the graph is cordial.
k-copies of graph obtained on $G=$ double- tail $\left(\mathrm{C}_{5}, 3 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.
Proof:

Fig 4.11 One point union may be taken at vertices ' a^{\prime}, ' b ' ' c ', ' d '

From Fig 4.11 it follows that we can take one point union at five vertices ' a ', ' b ', ' c ', ' d 'or ' e '. For the one point union at any of these vertices we use Type A label and type B label alternately in $G^{(k)}$.In all cases the label number distribution is given by $v_{f}(0,1)=(6+10 x, 5+10 x)$, $e_{f}(0,1)=(6+11 x, 5+11 x)$ where $k=2 x+1, x=0,1,2 \ldots$ If $k=2 x ; x=1,2,$. then we have, $\mathrm{v}_{\mathrm{f}}(0,1)=(11+10(\mathrm{x}-1), 10+10(\mathrm{x}-1)), \mathrm{e}_{\mathrm{f}}(0,1)=(11 \mathrm{k}, 11 \mathrm{k})$. Thus the graph is cordial.

Conclusions: In this paper we define some new families obtained from C_{5} and fusing totwo adjacent vertices with pendent edges upto three. We show that 1) 1All non- isomorphic one point union on kcopies of graph obtained on $G=$ double tail $\left(\mathrm{C}_{5}, \mathrm{P}_{2}\right)$ also called $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs. 2) All non- isomorphic one point union on k-copies of graph obtained on $G=$ double- tail $\left(\mathrm{C}_{5}, 2 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs. 3) All nonisomorphic one point union on k-copies of graph obtained on $G=$ double- tail $\left(\mathrm{C}_{5}, 3 \mathrm{P}_{2}\right)$ given by $\mathrm{G}^{(\mathrm{k})}$ are cordial graphs.

References:
[1] M. Andar, S. Boxwala, and N. Limye, New
families of cordial graphs, J. Combin. Math. Combin. Comput., 53 (2005) 117-154. [134]
M. Andar, S. Boxwala, and N. Limye, On the cordiality of the t-ply $\operatorname{Pt}(\mathrm{u}, \mathrm{v})$, Ars Combin., 77 (2005) 245-259. [135]
[3] Bapat Mukund, Ph.D. thesis submitted to university of Mumbai. India 2004.
Bapat Mukund V. Some Path Unions Invariance Under Cordial labeling, IJSAM feb. 2018 issue.
I.Cahit,

Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23 (1987) 201-207.
[6]
J. Clark and D. A. Holton, A first Harary, Graph Theory, Narosa publishing Yilmaz, Cahit, E-cordial graphs, Ars J.Gallian, Dynamic survey of graph labeling, E.J.C
D. WEST, Introduction to Graph Theory, Pearson
look at graph theory; world scientific.
,New Delhi
combina, 46,251-256.
2017
Education Asia.
${ }^{1}$ Mukund V. Bapat, Hindale, Tal: Devgad, Sindhudurg
Maharashtra, India 416630
mukundbapat@yahoo.com

